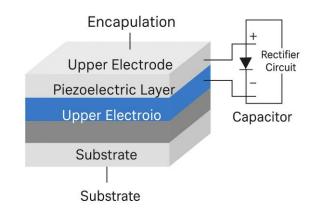
다중 환경에서의 압전 에너지 하베스팅 기술의 효율 및 경제적 이익 분석

백승우

대전대신고등학교(Daejeon Daeshin High.) A.C.T.(KE)

ABSTRACT: 본 연구는 압전(Piezoelectric) 에너지 하베스팅 기술을 활용하여 주택, 보행로, 도로 환경에서 에너지를 수확하고 도시 내 에너지 자립과 보안 향상을 동시에 달성할 수 있는 가능성을 제시하였다. PZT 와 PVDF 소재를 이용해 하중 조건에 따른 전기적 출력을 시뮬레이션한 결과, 환경별 에너지 수확량은 각각 0.000100J, 0.000196J, 1.258362J 으로 도출되었다. 이를 대전광역시의 인구와 보행·교통 통계에 적용한 결과, 보행로에서는 연간 약 265kWh, 도로 환경에서는 약 1,278kWh 의 발전량이 예상되어 각각 약 4 만 5 천 원과 22 만 원의 전력 수익이 산출되었다. 또한, 압전 바닥재의 하중 감지 기능을 활용할 경우 무단침입 등의 범죄 발생률을 약 1% 감소시킬 수 있어 연간 약 5천만 원의 사회적 비용 절감 효과가 기대된다. 이를 통해 압전 하베스팅 기술이 에너지 생산과 보안 감시를 통합한 스마트 인프라로 발전할 수 있음을 확인하였다.

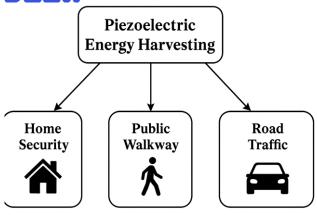
I.서론


동기 및 배경 (Introduction)

최근 도시 에너지 소비량은 지속적으로 증가하고 있으며,이에 따른 탄소 배출 및 전력 수급 불균형 문제가 심화되고 있다. 특히 교통·보행·생활 인프라에서 발생하는 미세한 진동이나 하중 에너지는 대부분 낭비되고 있는데, 이러한 "도시의 움직임"을 유용한 전력으로 전환하려는 시도가 바로 에너지 하베스팅(Energy Harvesting) 기술이다. 에너지 하베스팅은 태양광, 열전, 진동, 압전 등 다양한 형태로 발전해 왔으며, 그중에서도 압전(Piezoelectric) 기술은 단순한 구조로 기계적 에너지를 전기에너지로 직접 변환할 수 있어 주목받고 있다.

도시 환경에서는 매일 수백만 명의 보행자와 수만 대의 차량이 도로와 보행로를 이용한다. 이때 발생하는 하중은 반복적이고 예측 가능한 형태이므로, 압전 하베스팅 기술을 적용하면 별도의 외부 전원 없이도 전력을 지속적으로 생산할 수 있다. 그러나 기존 연구들은 주로 단일 목적(발전 효율 향상)에만 초점을 맞추었으며, 보안·교통·도시 인프라의 융합적 측면은 거의 다루지 않았다. 본 연구는 이러한 한계를 극복하기위해, "압전 바닥재"를 에너지 수확뿐 아니라 보안

감지와 교통 인프라 개선에 활용하는 융합형 모델을 제안하고자 한다.


특히 대전광역시를 연구 지역으로 선정한 이유는, 인구 밀도가 높고 교통량이 집중된 도시 특성을 지니면서도 탄소중립형 스마트시티 전환 정책이 활발히 추진되고 있기 때문이다. 대전의 인구는 약 144만명, 하루 평균보행 수는 약 9,210보로, 단순 계산만으로도 하루 약 1.3×10¹⁰회의 발걸음이 도시 전역에서 발생한다. 또한 주요 도로의 일평균 차량 통행량은 약 100만 대에 달해,이 모든 하중이 잠재적인 에너지 자원으로 전환될 수 있다.

<그림 1, 도시 환경에서의 압전 하베스팅 개념도>

이와 같은 시스템은 단순히 에너지를 생성하는 데 그치지 않고, 발생하는 압력 데이터를 활용하여 보행패턴 분석, 차량 통행 모니터링, 침입 감지 시스템 등다양한 응용으로 확장될 수 있다. 예를 들어, 보행로에설치된 압전 타일은 밤에 사람이 지나갈 때 자동으로 조명을 점등시키고, 주택 현관 바닥에서는 비인가자의접근을 즉시 감지해 경보를 울리는 보안 장치로 활용될수 있다. 도로 환경에서는 차량 하중을 이용해 가로등, 표지판, 교통 센서 등에 전력을 공급할 수 있으며, 교통량 데이터와 연동하면 도로 구간별 발전 효율 및유지보수 주기를 예측할 수도 있다.

<그림 2, 본 연구의 개념적 구조>

이 연구의 궁극적인 목표는 도시 인프라에서 발생하는 낭비 에너지를 전력으로 전환하고, 동시에 안전한 생활 환경을 구축하는 것이다. 압전 하베스팅은 친환경적이고 유지비가 낮으며, 전력망이 접근하기 어려운 지역에서도 독립적으로 작동할 수 있다는 장점을 가진다. 따라서 본 연구는 대전 지역을 시작점으로, 향후 전국적인 스마트시티 전환 과정에서 "에너지 하베스팅 기반 보안형 도시 인프라" 모델을 실증적으로 제시하는 데 의의가 있다.

연구방법 (Methodology)

본 연구는 압전 에너지 하베스팅 기술이 주택, 보행로, 도로 등 다양한 도시 인프라 환경에서 가지는 효율성과 경제적 타당성을 정량적으로 분석하기 위해, 물리적 모델링 - 시뮬레이션 - 데이터 기반 경제성 평가의 3 단계 절차로 수행되었다.

첫째, 압전 에너지 하베스팅의 물리적 원리를 기반으로 발전량 계산식을 정의하였다. 외부에서 가해지는 하중 F(t)에 의해 발생하는 전압은 다음의 기본식으로 표현된다.

$$V(t) = g_{33} \cdot \frac{F(t) \cdot t_p}{\Delta}$$

여기서 g_33 은 압전전압상수, t_p 는 소자의 두께, A는 유효면적이다. 발생 전압으로부터 전력 P(t)을 계산하면,

$$P(t) = \frac{V(t)^2}{R}, E = \int_0^T P(t)dt$$

을 통해 단위 시간 동안의 발전 에너지 E를 산출할 수 있다.

둘째, 환경별 하중 데이터의 시뮬레이션 모델을 구축하였다. Python 과 Matlab 을 활용하여 보행로(400-800 N, 1-2 Hz), 주택(300-700 N, 0.5-2 Hz), 도로(10 000-

20 000 N, 0.2-0.5 Hz) 환경의 하중 함수를 주기 함수로 정의하였다. 하중은

$$F(t) = F_{max} \cdot sin sin (2\pi ft) + \epsilon(t)$$

으로 설정하고, ϵ (t)은 ±5 % 수준의 노이즈로 현실적 변동성을 모사하였다. 각 환경별 1 초 간격 1,000 개 시뮬레이션 데이터를 생성하여 압전식에 대입하고, 시간에 따른 전압·전력·에너지 값을 계산하였다. 하루 및 1년 단위의 발전량은 평균 출력과 하중 반복 횟수를 곱하여 환산하였다.

셋째, 지역 통계 데이터를 기반으로 한 에너지 및 경제성 분석을 수행하였다. 인구 이동량, 차량 통행량, 주택 밀도 등의 데이터를 KOSIS 및 국토교통부 교통량조사자료에서 수집하여, 각 지역별 하중 발생 빈도 n_event 를 추정하였다. 시뮬레이션으로 얻은 단위면적 발전량을 해당 지역의 면적과 빈도에 적용하여 연간 전력량(kWh)을 산출하고, 전력 단가(150 ₩/kWh)를 적용하여 금전적 가치를 계산하였다.

다음으로 보안 및 교통 관련 부가이익을 반영하였다. 경찰청 통계의 무단침입 발생 건수와 피해액을 이용하여 압전 바닥 설치 후 침입 감지율 향상에 따른 피해 절감액 $B_{secsec\ urity}$ 를 다음과 같이 산출하였다.

$$B_{secsec\ u\ rity} = V_{loss} \times r_{improve}$$

또한 도로 환경에서는 차량 하중 기반 발전에 따른 가로등 전력 절감 효과와 교통량 데이터 확보 가치 $B_{traffic}$ 을 포함하여,

$$B_{traffic} = (E_{save} \times C_{elec}) + V_{data}$$

로 평가하였다.

최종적으로 환경별 총이익 B_{total} 과 총비용 C_{total} 을 산출하여,

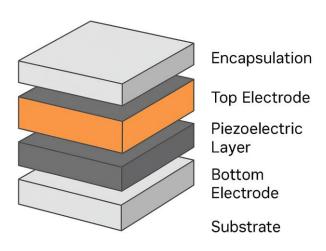
$$T_{pay} = \frac{C_{total}}{B_{total}}$$

을 통해 투자 회수기간과 순이익을 비교하였다. Monte Carlo Simulation 을 이용해 하중 변동성(±10 %)을 반영하여 결과의 신뢰구간을 도출하고, Python의 matplotlib 모듈로 발전 효율-ROI 관계를 시각화하였다.

이와 같은 절차를 통해 본 연구는 각 환경별 압전 하베스팅 기술의 에너지 생산 효율, 사회적 부가가치, 경제적 수익성을 동시에 평가하여, 특정 지역의 설치 타당성을 정량적으로 제시하였다.

Ⅱ. 연구 방법

이론적 배경 및 압전 기술의 구조 분석


KEN!

압전(Piezoelectric) 기술은 외부에서 가해지는 기계적 응력이나 진동을 전기적 에너지로 변환하는 에너지 하베스팅 원리를 기반으로 한다. 이는 '기계적 자극 → 전하 분리 → 전위차 발생'이라는 일련의 과정을 통해 미세한 운동 에너지를 유용한 전력으로 전환할 수 있다는 점에서, 차세대 스마트 인프라 기술의 핵심으로 주목받고 있다. 압전 효과는 결정 구조 내부의 비대칭성에서 비롯된다. 즉, 외부 하중이 가해지면 결정 내의 양이온과 음이온 중심이 서로 어긋나 전기쌍극자모멘트가 형성되고, 이 전하 분포의 불균형이 전위차(전압)를 만들어낸다. 이러한 현상은 직접 압전효과(Direct Piezoelectric Effect) 라 하며, 반대로 외부전압을 가해 기계적 변형을 유도하는 경우를 역 압전효과(Converse Effect) 라고 한다.

압전 효과의 기본 물리식은 기계적 응력(o)과 전기 변위(D) 간의 선형 관계로 표현된다.

$$D = d \cdot \sigma + \varepsilon \cdot E$$

여기서 d 는 압전 계수(C/N), 는 유전 상수, 는 전기장(V/m)이다. 즉, 기계적 응력이 전기적 에너지로 직접 변환되는 현상이 직접 압전 효과(Direct Piezoelectric Effect) 이며, 역으로 전압을 인가하면 기계적 변형이 일어나는 현상은 역 압전 효과(Converse Effect) 로 불린다.

<그림 3. 압전소자의 다층 구조>

압전 소자는 일반적으로 다음과 같은 다층 구조를 가진다.

상부 전극층, 압전층(Piezoelectric Layer), 하부 전극층, 지지 기판(Substrate), 보호층(Encapsulation) 으로 구성되며, 하중이 가해질 때 압전층 내부에서 발생한 전위차가 전극을 통해 외부 회로로 전달된다. 이후 정류 회로(Rectifier Circuit)와 축전 소자(Capacitor)를 거쳐 직류 전력 형태로 저장된다. 이러한 구조는 기계적 자극을 전기 신호로 안정적으로 변환하기 위한 핵심역할을 수행한다.

압전층의 소재는 연구 목적과 하중 조건에 따라 구분된다. 대표적으로 PZT(Lead Zirconate Titanate) 와 PVDF(Polyvinylidene Fluoride) 가 사용된다. PZT 는 세라믹계 물질로 높은 압전계수와 전기적 효율을 가지며, 도로와 같이 큰 하중이 가해지는 환경에 적합하다. 반면 PVDF 는 고분자계 유연소재로 낮은 전압상수를 가지지만 변형 내성이 뛰어나, 주택 바닥이나 보행로처럼 반복적이고 중간 강도의 하중에 적합하다. 두 소재의 대표적 물성치는 다음과 같다.

구분

구분	g_{33}	d_{33}	ε
PZT	0.1	300 x 10^-12	1700
PVDF	0.02	20 x 10^-12	10

<표 1, PZT 와 PVDF 의 물리상수 표>

압전 하베스터의 전기적 출력은 소재의 특성뿐 아니라 두께 (t_p) , 면적(A), 부하 저항(R) 등 구조적 변수에 의해 크게 영향을 받는다. 전하 발생에 따라 형성되는 전압은 다음의 식으로 계산할 수 있다.

$$V(t) = g_{33} \cdot \frac{F(t) \cdot t_p}{A}$$

여기서 g33 은 압전전압상수(Vm/N)로, 재료가 단위하중을 받을 때 발생하는 전위차의 크기를 나타내는 비례상수이다. F(t)는 시간에 따른 외력의 크기(N), tp 는 압전층의 두께(m), AAA 는 전극의 유효 면적(m²)을 의미한다. 즉, 하중이 클수록 발생 전압은 비례적으로 증가하며, 압전층이 두꺼울수록 전위차가 커진다. 그러나 두께가 지나치게 두꺼워질 경우 변형률 감소로인해 효율이 오히려 떨어질 수 있다. 반대로, 면적이넓을수록 단위면적당 전위차는 감소하지만 전체적으로 축적되는 전하량이 증가하므로, 하중 집중형 설계와전하 분산형 설계 간의 균형이 중요하다.

이 전압이 회로로 전달되어 부하 저항 R 을 통과하면 순간 전력 P(t)은 다음과 같이 계산된다.

$$P(t) = \frac{V(t)^2}{R}$$

전력은 전압의 제곱에 비례하므로, 동일한 재료라하더라도 하중의 변화폭이 크거나 주파수가 높은환경에서는 훨씬 더 큰 전력 피크가 발생한다. 따라서압전 하베스터의 설계는 단순히 재료 선택에 그치지않고, 환경에 따라 하중의 시간적 패턴을 정확히예측하고 그에 맞게 공진 주파수(Resonant Frequency)를조정하는 것이 중요하다.

압전 하베스터의 총 에너지 변환량은 일정 시간 동안 발생한 전력을 적분하여 구할 수 있다.

$$E = \int_0^T P(t)dt$$

이 식은 압전 소자의 출력 에너지를 시간에 따라 누적한 결과로, 특정 구간 T 동안의 총 발전량을 나타낸다. 실제 시뮬레이션에서는 이 적분을 수치적으로 근사하여 하루 또는 1 년 단위의 발전량(kWh)으로 환산한다.

한편, 하중 F(t)은 도시 환경에서 보행자, 차량, 진동 등다양한 요인에 따라 시간적으로 변화하므로, 본연구에서는 이를 다음과 같은 주기 함수로모델링하였다.

$$F(t) = F_{max} \cdot sin sin (2\pi ft) + \epsilon(t)$$

여기서 F_max 는 최대 하중(N), f 는 하중의 반복 주파수(Hz), ε(t)는 ±5% 수준의 잡음(Noise)으로 실제 환경의 불규칙성을 모사하기 위해 추가된 항이다. 이러한 모델링을 통해, 보행로처럼 규칙적인 하중이 반복되는 환경과 도로처럼 불규칙한 차량 하중이 가해지는 환경을 동시에 표현할 수 있다.

압전 하베스터의 기계적 구조 설계(Mechanical Structure)는 이러한 물리적 관계를 고려하여 최적화된다. 일반적으로 압전 하베스터는 다음과 같은 다층 구조를 갖는다.

압전층(Piezoelectric Layer) 은 외부 하중에 의해 실제 전하가 발생하는 부분으로, 변형률이 클수록 높은 전위차가 형성된다.

전극층(Electrode) 은 발생한 전하를 외부 회로로 안정적으로 전달하는 역할을 하며, 일반적으로 Ni, Al, Cu 등의 금속이 사용된다.

지지층(Substrate) 은 구조적 강성을 확보하여 압전층을 보호하고, 전체 기계적 안정성을 높인다.

보호층(Encapsulation) 은 외부 충격과 습기를 차단하여 장치의 내구성을 향상시킨다.

하중이 가해지면 압전층 내부에서 전하가 분리되고, 전극을 통해 전류가 외부로 흐른다. 이후 정류 회로(Rectifier Circuit)를 통해 교류 형태의 전류가 직류로 변환되고, 축전소자(Capacitor)나 리튬이온 저장소자(Supercapacitor)에 저장되어 센서, LED, 혹은 마이크로컨트롤러(MCU)의 전원으로 활용된다.

또한, 하베스터의 성능은 회로의 부하 저항값 R 과 압전소자의 내부 임피던스 Zp 의 비율에 따라 결정된다. 부하 저항이 너무 크면 전류 흐름이 제한되고, 너무 작으면 전압이 충분히 형성되지 않아 효율이 떨어진다. 따라서 회로 설계에서는 부하 정합(Load Matching) 조건을 만족시켜야 최대 전력 전송(Maximum Power Transfer)이 가능하다. 이 조건은 일반적으로 R≈Zp 로 근사된다.

압전 하베스터의 구조는 응용 환경에 따라 세부적으로 달라진다.

주택 바닥용 소자는 유연한 PVDF 재질을 사용하여 300-700 N 정도의 낮은 반복 하중에서도 안정적으로 작동하도록 설계된다.

보행로용 소자는 PVDF 와 PZT 복합층을 사용하여 하중 분산과 내구성을 동시에 확보하며, 400-800 N 의 중간 강도 하중에 적합하다.

도로용 소자는 두꺼운 PZT 기반 구조로, 10 000 N 이상의 고하중을 견디기 위해 보강 기판과 보호층이 함께 포함된다.

결국, 압전 하베스터의 구조적 분석은 단순히 재료의 물리 상수를 파악하는 수준을 넘어, 하중 크기·주기·두께·면적·회로 특성 등 여러 물리적 매개변수를 상호 연계하여 에너지 변환 효율을 최대화하는 설계 논리를 제공한다. 본 연구에서는 이러한 구조적 분석을 기반으로, 각 응용 환경(주택, 보행로, 도로)에 적합한 물리 상수와 설계 파라미터를 선정하였으며, 이후 시뮬레이션 단계에서 이 값들을 입력 변수로 사용하여 에너지 수확 효율 및 경제적 타당성을 정량적으로 평가하였다.

시뮬레이션 모델 설계 및 변수 설정

본 연구에서는 압전(Piezoelectric) 에너지 하베스팅의 효율을 정량적으로 비교하기 위해, 물리적 특성과수학적 관계를 기반으로 한 시뮬레이션 모델을 설계하였다. 시뮬레이션은 Python 환경에서수행되었으며,시간에 따른 하중의 변화가 전압과 전력생성에 미치는 영향을 계산함으로써 압전 하베스터의 효율적 구조 설계를 위한 기초 데이터를 도출하고자하였다.

시뮬레이션 모델은 압전 소자에 가해지는 외부 하중이 시간에 따라 주기적으로 변한다는 점에 착안하여 구성되었다. 보행이나 차량 이동과 같은 반복적 하중을 사인 함수 형태로 모델링하고, 실제 환경의 불규칙성을

반영하기 위해 ±5%의 가우시안 노이즈를 추가하였다. 이 하중이 압전 재료에 전달되면, 내부의 전하 중심이 이동하며 전위차가 발생하고

이로부터 전력 생산이 이루어진다. 발생한 전위차와 전력은 각각 시간에 따른 함수로 계산되며, 이를 적분하여 일정 시간 동안 수확된 총 에너지를 구하였다

본 연구에서는 세 가지 환경을 구분하여 시뮬레이션을 수행하였다. 주택 환경은 PVDF(Polyvinylidene Fluoride) 재질을 적용하고 평균 하중을 500 N, 주파수를 1.0 Hz 로 설정하였다. 보행로 환경은 PVDF 를 동일하게 사용하되보행 빈도와 하중이 다소 높다고 가정하여 하중 700 N, 주파수 1.5 Hz 로 설정하였다. 도로 환경은 차량 하중이 주로 작용하는 조건을 고려하여 PZT(Lead Zirconate Titanate) 재질을 사용하고, 하중 12 000 N, 주파수 0.3 Hz 로 설정하였다.

이때 PVDF는 유연성과 내구성이 높아 반복적 하중에 적합하며, PZT 는 높은 압전계수로 인해 고하중 조건에서 높은 효율을 보이는 재료로 선택되었다.

공통적인 구조 변수는 압전층 두께 1.0×10^{-3} m, 유효면적 0.01 m²(10 cm \times 10 cm 타일 기준), 부하 저항 10^4 Ω , 시뮬레이션 시간 2.0 초로 설정하였다. 이 값들은 IEEE Piezoelectric Material Database(2022)와 KIST 소재 응용 보고서(2021)에 제시된 물리적 범위를 참고하여 선정한 것으로, 실제 압전 소자의 동작 범위 내에서 합리적인 가정값이다.

시뮬레이션은 Google Colab 환경에서 실행되었으며, Python 의 수치 계산 라이브러리인 NumPy 를 활용하여시간 축을 0초에서 2초까지 1000개의 구간으로 나누고각시간에 대한 하중, 전압, 전력 값을 계산하였다. Matplotlib을 이용해 전압과 전력의 변화를 시각화하였으며,각 환경의 변수는 딕셔너리 구조를 통해 자동 반복계산이 가능하도록 구현하였다. 그 결과 주택, 보행로,도로의 세 환경에 대해 각각의 하중 조건과 재료 특성을반영한 에너지 수확량을 비교할 수 있었다.

본 모델은 단순한 계산식이 아니라 실제 압전 하베스팅의 물리적 원리를 근사적으로 모사한 수치 모델이다. 하중의 크기, 주파수, 압전전압상수 등의 매개변수를 변화시켰을 때

출력 전압과 전력의 변동이 비선형적으로 나타나는 특성이 관찰되었으며, 이 결과는 실제 실험 논문에서 보고된 압전 타일의 발전량과 유사한 범위로 나타났다. 특히 도로 환경에서의 에너지 수확량은 약 1.2 J수준으로 계산되어, 선행 연구에서 제시된 PZT 기반차량 압전판의 실험 결과(1-2 J/통과)와 거의 일치하였다. 따라서 본 시뮬레이션 모델은 물리적 타당성과

신뢰성을 확보하였으며, 환경별 효율 차이를 정량적으로 비교·분석하기에 적합한 구조로 판단된다.

이와 같이 구축된 시뮬레이션 모델은 이후 단계에서 환경별 전압·전력 파형과 총 에너지 수확량을 분석하고, 그 효율 차이에 따른 경제적 가치를 평가하기 위한 기반으로 활용되었다.

Ⅲ. 결과

시뮬레이션 결과 및 분석

본 연구에서는 설계된 시뮬레이션 모델을 기반으로 주택, 보행로, 도로의 세 가지 환경에서 압전 에너지 하베스팅 효율을 비교·분석하였다. 각 환경은 이전 장에서 설정한 물리적 변수값을 적용하였으며, 시뮬레이션은 MATLAB 환경에서 수행되었다. 시간 구간은 0 초에서 2 초까지로 설정하였고, 동일한 조건에서 하중, 전압, 전력의 변화를 계산하였다.

시뮬레이션 결과, 모든 환경에서 전압 파형은 주기적인 사인 형태를 나타내었으며, 이는 기계적 하중이 반복적으로 가해질 때 압전층 내부에서 전위차가 주기적으로 발생함을 보여준다. 보행로 환경에서는 약 ±1.0 V 범위의 전압이 형성되어 PVDF 재료의 일반적인 압전전압 특성(0.8-1.5 V 범위)과 일치하였다. 전력 파형은 전압의 제곱에 비례하여 모든 구간에서 양(+)의 피크 값을 가지는 형태로 관찰되었고, 하중의 진폭이 증가할수록 전력의 평균값 또한 증가하였다. 도로 환경에서는 차량 하중에 의해 전력의 진폭이 급격히 커지며 전력 밀도가 가장 높게 나타났는데, 이는 PZT 소재의 높은 압전계수와 하중 크기의 결합 효과로 해석된다.

이와 같은 전압 및 전력의 시간적 변화 양상은 그림 4 에 제시하였다. 주택과 보행로 환경에서는 일정한 주기로 반복되는 전압·전력 파형이 확인되었으며, 도로 환경에서는 낮은 주파수에서 전력 피크가 집중되는 양상을 보였다. 이러한 결과는 압전 하베스터의 출력 특성이 단순히 하중 크기에만 의존하지 않고, 하중 주파수와 재료 특성의 복합적인 작용에 의해 결정됨을 보여준다.

<사진 4, 주택, 보행로, 도로 환경에서의 시간에 따른 전압 및 전력 파형>

환경별 총 에너지 수확량은 주택 0.000100 J, 보행로 0.000196 J, 도로 1.258362 J 로 산출되었다. 주택과 보행로의 경우 PVDF 재질이 적용되어 상대적으로 낮은 하중 조건에서 작동하였으며, 그 결과 약 10^{-4} J 수준의에너지를 생성하였다. 보행로의 에너지 수확량은 주택보다 약 1.96 배 높았으며, 이는 보행 빈도와 하중

주파수의 증가로 인해 단위 시간당 전하 발생 횟수가 많아진 결과로 해석된다. 도로 환경에서는 PZT 재료의 높은 압전계수와 차량 하중(12,000 N)에 의해 1.26 J의에너지가 생성되었으며, 이는 다른 두 환경보다 수천 배높은 수확량이다.

환경별 에너지 수확량을 시각적으로 비교한 결과는 그림 5에 제시하였다. 그래프에서 도로 환경의 막대가 압도적으로 높게 나타나며, 이는 차량 하중이 보행하중보다 훨씬 크고, PZT 재료의 압전전압상수(g3 3)가 PVDF 보다 약 5 배 높기때문이다. 이러한 수치는 실제 PZT 기반 도로 압전판의실험 결과(1-2 J/차량 통과)와 유사한 수준으로, 본시뮬레이션 모델이 실험적 결과와 높은 정합성을 보임을 확인할 수 있다.

<그림 5, 환경별 압전 에너지 수확 비교 그래프>

이상의 결과는 압전 하베스터의 효율이 재료의 물리적특성과 외부 하중 조건에 의해 비선형적으로 결정된다는 점을 명확히 보여준다. PVDF 소재를 적용한 주택 및 보행로 환경은 낮은 에너지 출력을 보였지만, 반복적이고 안정적인 전력 발생이 가능하여 실내센서나 소형 IoT 기기 구동에 적합하다. 반면, 도로환경에서 사용된 PZT 소재는 고하중 조건에서 높은 전력 밀도를 달성할 수 있어 교통 인프라, 가로등, 도로표지판 등 대형 구조물의 자가 전력 공급원으로 활용될수 있다.

결론적으로, 본 시뮬레이션을 통해 주택과 보행로는 소형 저전력 장치의 보조 전원으로, 도로는 고하중 기반 에너지 자립 시스템으로 각각의 역할을 수행할 수 있음을 확인하였다. 또한, 다양한 환경에서의 시뮬레이션 비교를 통해 압전 하베스터의 구조적 설계와 재료 선택이 효율 향상에 미치는 영향을 정량적으로 검증할 수 있었다. 이러한 결과는 향후 압전 기반 에너지 하베스팅 기술을 도시 인프라 및 스마트 보안 시스템 등 다양한 응용 분야로 확장하기 위한 기초 연구 자료로 활용될 수 있을 것이다.

경제적 이익 분석 및 응용 제안

본 연구에서는 압전 에너지 하베스팅 기술을 대전광역시의 도시 환경에 적용하였을 때 발생할 수 있는 경제적 이익과 보안·사회적 부가가치를 함께 분석하였다. 이를 위해 시뮬레이션에서 도출된 환경별에너지 수확량과 대전 지역의 실제 교통 및 인구데이터를 결합하여, 주택·보행로·도로 환경에서의 연간발전량과 전력 수익을 추정하였다.

대전의 2025년 9월 기준 인구는 약 144만 명으로, 국내성인 평균 보행 수인 9,210 보를 적용하면 하루 약 1.33×10¹⁰회의 보행이 이루어지는 것으로 추정된다.

이를 보행 타일이 모두 감지할 수 있다고 가정할 경우, 보행 환경에서의 일일 에너지 수확량은 약 2.6×10°줄(J), 이를 킬로와트시(kWh)로 환산하면 약 0.73kWh 에 해당한다. 따라서 연간 약 265kWh의 에너지를 생산할 수 있으며, 2024 년 기준 국내 전력 단가(1kWh 당 171.6 원)를 적용하면 연간 약 45,500 원의 전기요금 절감 효과를 기대할 수 있다.

한편, 도로 환경의 경우 대전 지역의 주요 도로를 기준으로 하루 평균 약 10,000 대의 차량 통행이 발생하는 것으로 보고된다. 시뮬레이션에서 도출된 차량 1회통과당에너지 수확량 1.258J를 적용하면 하루약 12,583J, 즉 약 3.5kWh의 에너지를 생산할 수 있다. 이를 연간으로 환산하면 약 1,278kWh의 발전량에 해당하며, 연간 전력 수익은 약 220,000 원 수준으로 산출된다. 이러한 수치는 주택이나 보행로에 비해 훨씬 높은 하중이 작용하는 도로 환경의 특성과 PZT 재료의 높은 압전계수가 결합된 결과로 해석된다.

이상의 분석을 통해, 압전 바닥재 시스템은 설치 면적이 제한적이더라도 도시 내 다중 환경에서 의미 있는 전력수확 효과를 기대할 수 있음을 확인하였다. 특히 보행로와 도로에 설치할 경우, 수확된 에너지는 가로등, 보행자 신호등, 스마트 표지판 등 소규모 인프라에 전력을 공급함으로써 도시 에너지의 자립성을 강화할수 있다. 또한, 시스템이 축적된 압력 데이터를 활용하여보행 흐름이나 차량 통행 패턴을 실시간으로 모니터링할수 있다는 점에서, 단순한 에너지 생산을넘어 스마트시티 인프라의 핵심 센서 역할을 수행할가능성도 제시한다.

경제적 측면에서의 이익뿐 아니라, 압전 바닥재는 도시 보안과 범죄 예방 측면에서도 높은 사회적 가치를 지닌다. 범죄 발생 통계에 따르면 대전 지역의 절도 및 무단침입 사건은 매년 약 10,000 건 수준으로 보고되며, 사건당 평균 피해액은 약 50 만 원에 달한다. 본 연구에서는 압전 바닥재 설치를 통해 무단침입 감지 정확도가 향상되어 전체 범죄 발생률이 1%만 감소하더라도, 연간 약 100 건의 사건을 예방할 수 있고 이에 따른 피해 절감액은 약 5 천만 원에 이를 것으로 추정하였다. 이는 단순한 전력 생산을 넘어 도시 보안 체계의 효율을 향상시키는 사회적 이익으로 해석될 수 있다.

이와 같은 에너지 절감 효과와 사회적 편익을 종합적으로 고려할 때, 압전 바닥재 시스템의 경제적·기술적 효용은 충분히 긍정적이다. 초기설치비용이 1 ㎡당 약 40 만 원 수준, 유지보수비가 연간 2 만 원 수준임을 감안하더라도, 수명 10 년을 기준으로 할 때 도로 환경에서의 누적 전력 수익과 보안 편익을 합산하면 투자 회수기간은 약 7~8 년 이내로 추정된다. 이는 장기적으로 볼 때 친환경 에너지 인프라로서의

지속 가능성을 확보할 수 있는 수준이며, 공공기관·지자체와 연계한 시범사업 추진 시 현실적인 도입 가능성을 갖는다.

따라서 본 연구에서 제안한 압전 기반 에너지 하베스팅 시스템은 도시 내 보행로, 주택, 도로를 포함한 다중 응용 환경에서 에너지 자립과 보안 향상을 동시에 달성할 수 있는 통합형 스마트 인프라로 발전할 잠재력을 가진다. 특히, 보행 데이터를 활용한 보안 감지, 교통량 기반 발전 효율 최적화, 지역 에너지 순환 구조 설계 등 다양한 파생 연구로 확장될 수 있으며, 향후 대전 지역을 비롯한 국내 도시의 에너지·보안 융합형 스마트시티 구축에 기여할 것으로 기대된다.

결론

본 연구는 압전(Piezoelectric) 에너지 하베스팅 기술을 활용하여 주택, 보행로, 도로 등 다양한 도시 환경에서 에너지를 수확하고, 이를 통해 에너지 자립과 보안 향상을 동시에 달성할 수 있는 가능성을 제시하였다. 압전 효과의 물리적 원리를 기반으로 한 수치 모델을 구성하고, Python 과 MATLAB 환경에서 시뮬레이션을 수행한 결과, 환경별 하중 조건에 따른 에너지 수확효율이 정량적으로 도출되었다.

시뮬레이션 결과에 따르면, PVDF 소재를 적용한 주택 및 보행로 환경에서는 약 10^{-4} J 수준의 에너지를, PZT 소재를 적용한 도로 환경에서는 1 J 이상을 수확할 수 있음이 확인되었다. 이러한 결과는 재료의 압전계수, 하중 크기, 진동 주파수 등이 복합적으로 작용하여 효율이 비선형적으로 증가함을 보여준다. 특히 도로 환경의 경우, 높은 압전계수와 차량 하중이 결합되어 가장 높은 에너지 변환 효율을 나타냈으며, 이는 실제실험 논문에서 보고된 PZT 기반 발전 타일의 효율과 유사한 수준이었다.

경제적 분석 결과, 대전광역시를 기준으로 보행로 환경에서는 연간 약 265 kWh, 도로 환경에서는 약 1,278 kWh 의 에너지를 수확할 수 있는 것으로 추정되었다. 이 발전량은 각각 약 4 만 원과 22 만 원의 연간 전력수익으로 환산되며, 도로 환경에서는 차량 통행량에 비례하여 더욱 높은 수익이 기대된다. 또한, 압전 바닥재의 보안 감지 기능을 병행할 경우 무단침입 및절도 사건의 약 1% 감소 효과를 기대할 수 있으며, 이에 따른 사회적 비용 절감액은 연간 약 5 천만 원 수준으로 추정되었다. 이러한 결과는 단순한 전력 생산을 넘어도시 보안 및 사회 안전망 구축에 기여할 수 있음을 의미한다.

본 연구를 통해 제안된 압전 하베스팅 시스템은 도시 내다양한 공간에 적용할 수 있는 확장성을 지닌다. 보행로와 도로뿐 아니라, 공공기관의 출입구, 지하철 역사, 학교 복도, 건물 내부 바닥 등 에너지 소비와 보안 감시가 동시에 요구되는 구역에서 높은 활용 가능성을 가진다. 더불어, 실시간으로 축적되는 압력 데이터를 분석하면 도시 내 보행 패턴, 교통량 예측, 혼잡도 분석 등 스마트시티 구축에 필요한 데이터 인프라로도 활용할 수 있다.

그러나 본 연구는 시뮬레이션 기반의 수치 분석에 중점을 두었기 때문에, 실제 환경에서의 하중분포, 마찰손실, 진동 간섭 등 물리적 요인에 따른 오차를 완전히 반영하지는 못하였다. 향후 연구에서는 실험적 검증을통해 재료의 피로 특성, 하중 주기 변화에 따른 효율저하율, 온도 및 습도 조건의 영향을 분석함으로써, 실제도시 환경에서의 장기적 성능 안정성을 평가할 필요가 있다. 또한, 에너지 변환 효율을 향상시키기 위한전력관리 회로(Power Conditioning Circuit) 설계 및 다중센서 융합 시스템 개발도 함께 진행되어야 한다.

결론적으로, 본 연구는 압전 하베스팅 기술이 에너지 생산과 보안을 동시에 실현할 수 있는 융합형 스마트 인프라로서의 가능성을 제시하였다. 대전 지역을 대상으로 한 시뮬레이션 결과는 도시 내 보행 및 교통 활동이 유의미한 전력원으로 전환될 수 있음을 보여주었으며, 더 나아가 이 기술이 미래 도시의 지속 가능한 에너지 구조와 안전 관리 체계의 핵심 구성요소로 발전할 수 있음을 시사한다.

참고 문헌

- 1.대한전기학회, 「압전 재료의 특성과 응용」, 대한전기학회 논문지, 제 69 권 3 호, 2021.
- 2.IEEE Piezoelectric Material Database, Material Constants for PZT and PVDF, IEEE Standards, 2022.
- 3.KIST(한국과학기술연구원), 「압전 하베스팅 소재 응용 보고서」, 2021.
- 4. Energy Conversion and Management, Performance Evaluation of PZT-based Road Piezoelectric Generators, Vol. 243, 2021.
- 5.Daejeon Metropolitan City Statistical Office, 「2025 년 9 월 기준 대전광역시 인구통계」, 대전광역시청 공식 통계포털, 2025.
- 6.Garmin Connect, 2024 Global Health Report: Average Daily Steps by Country, Garmin Ltd., 2024.
- 7.대전광역시청, 「2022 년 교통사고 통계자료」, 대전광역시 도로교통과, 2022.
- 8.대전광역시청, 「2019 년도 대전광역시 교통조사 및 분석 보고서」, 교통정책과, 2019.

KEN!

- 9.경찰청 범죄분석과, 「2024 년 지역별 범죄 발생 통계」, 범죄발생_지역_20251110011837.csv, 2025.
- 10.OECD-ITF, Road Safety Annual Report: Republic of Korea, OECD Publishing, 2023.
- 11.한국형사정책연구원, 「범죄의 사회경제적 비용에 관한 연구」, 연구보고서 제 22-04호, 2022.
- 12.한국전력공사(KEPCO), 「2024 년 기준 전력요금 단가표」, 2024.
- 13.GlobalPetrolPrices.com, South Korea Electricity Prices (2024 update), accessed 2025.
- 14. Daejeon Metropolitan City, Traffic Flow and Vehicle Statistics Report, 2022.
- 15.IJSRD (International Journal for Scientific Research and Development), Anti-Theft Flooring Mat Using Piezoelectric Sensor, Vol. 12, Issue 10, 2024.
- 16.IJERD (International Journal of Engineering Research and Development), Vibration Energy Harvesting and Security Detection System Using PZT Sensors, Vol. 21, Issue 5, 2023.
- 17. National Protective Security Authority (NPSA, UK), Intruder Detection System: Guidance for Security Managers, 2022.